Dimensional reduction in cohomological Donaldson–Thomas theory

نویسندگان

چکیده

For oriented $-1$ -shifted symplectic derived Artin stacks, Ben-Bassat, Brav, Bussi and Joyce introduced certain perverse sheaves on them which can be regarded as sheaf-theoretic categorifications of the Donaldson–Thomas invariants. In this paper, we prove that hypercohomology above sheaf cotangent stack over a quasi-smooth is isomorphic to Borel–Moore homology base up shift degree. This global version dimensional reduction theorem due Davison. We give two applications our main theorem. Firstly, apply it study cohomological invariants for local surfaces. Secondly, regarding Thom isomorphism dual obstruction cones, propose construction virtual fundamental classes stacks.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Examples in Cohomological Dimension Theory

It is well-known that dimX ≤ n if and only if every map of a closed subspace of X into the n-dimensional sphere Sn can be extended over X. It is also well-known that for the cohomological dimension dimGX of X with respect to an abelian coefficient group G, dimGX ≤ n if and only if every map of a closed subspace of X into the Eilenberg-Mac Lane complex K(G,n) extends over X. These properties giv...

متن کامل

A Cohomological Approach to Properties of the Norm Residue Symbol in Higher Dimensional Class Eld Theory

In earlier work the author proved that the Vostokov symbol of the n-dimensional mixed characteristic local eld X n = kfft 1 n) q ! q commutes with the corresponding Vostokov symbol of X n?1 = kfft 1 gg : : :fft n?2 gg. Here the author generalizes this theorem to the case of a regular local ring A subject to certain conditions. This is done by using Kato's reformulation of the Vostokov symbol as...

متن کامل

Cohomological Dimension Theory of Compact Metric Spaces

0. Introduction 1 1. General properties of the cohomological dimension 2 2. Bockstein theory 6 3. Cohomological dimension of Cartesian product 10 4. Dimension type algebra 15 5. Realization theorem 19 6. Test spaces 24 7. Infinite-dimensional compacta of finite cohomological dimension 28 8. Resolution theorems 33 9. Resolutions preserving cohomological dimensions 41 10. Imbedding and approximat...

متن کامل

Exact String-theory Instantons by Dimensional Reduction

We identify exact gauge-instanton-like solutions to (super)-string theory using the method of dimensional reduction. We find in particular the Polyakov instanton of 3d QED, and a class of generalized Yang-Mills merons. We discuss their marginal deformations, and show that for the 3d instanton they correspond to a dissociation of vectorand axialmagnetic charges. CERN-TH.7100/93 CPTh-A276.11.93 N...

متن کامل

Noncommutative Cohomological Field Theory and GMS soliton

We show that it is possible to construct invariant field theory under the translation of noncommutative parameter θμν . This is achieved by noncommutative cohomological field theory. As an example, noncommutative cohomological scalar field theory is constructed, and its partition function is calculated. The partition function is the Euler number of Gopakumar, Minwalla and Strominger (GMS) solit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2022

ISSN: ['0010-437X', '1570-5846']

DOI: https://doi.org/10.1112/s0010437x21007740